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A~traet--This article numerically studies the coupling of wall conduction with laminar free convective 
heat transfer of micropolar fluids along a vertical flat plate. The governing boundary layer equations along 
with the boundary conditions are first cast into a dimensionless form by a nonsimilar transformation and 
the resulting equations are then solved by the cubic spline collocation method. The effects of the conjugate 
heat transfer parameter p, the micropolar material parameter A and the Prandtl number Pr on the flow 
and thermal fields are discussed in detail. The results clearly indicate that the conjugate heat transfer 
parameter has a significant influence on the fluid flow and heat transfer characteristics in comparison with 
those reported for isothermal flat plate. The interfacial temperature increases monotonically along the 
streamwise direction. The conjugate heat transfer parameter is to reduce the solid-liquid interfacial tem- 
perature, the skin friction factor, the wall couple stress and the local heat transfer rate. The effect of wall 
conduction on the local heat transfer rate is more pronounced for a system with larger Prandtl numbers 
or smaller micropolar material parameters. In addition, comparing it to Newtonian fluids, a reduction in 

the skin friction factor and the local heat transfer rate is reported. © 1997 Elsevier Science Ltd. 

IMTRODUCTION 

Study of free conw;ction heat transfer in Newtonian 
fluids along a vertical plate is well-known. Its exten- 
sions to non-Newtonian fluids are important for the 
thermal design of industrial equipment dealing with 
molten plastics, polymeric liquids, foodstuffs, or slur- 
ties. Hence, considerable efforts have been directed 
toward this coupled, nonlinear boundary layer prob- 
lem. 

Eringen [1] proposed the theory of micropolar 
fluids, a sub class of micro-fluids, in which the micro- 
scopic effects arising from the local structure and mic- 
romotions of the fluid elements are taken into account. 
This theory can be: used to analyze the behavior of 
exotic lubricants, polymeric fluids, liquid crystals, ani- 
mal bloods, colloidal and suspension solutions, etc., 
for which the classical Navier-Stokes theory is inad- 
equate. Flow motion of such fluids is described by a 
local microrotation vector together with the velocity 
vector. Eringen [2] later generalized the micropolar 
fluids theory to include thermal effects. A com- 
prehensive review of the subject and application of 
micropolar fluid mechanics was given by Atiman et 

al. [3]. Ahmadi [4] obtained a similarity solution for 
the micropolar boundary layer flow over a semi-infi- 
nite plate. Jena and Mathur [5] further studied the 
laminar free convection in the boundary layer flow 
of the thermomicropolar fluids past a nonisothermal 
vertical flat plate. 

In addition, Soundalgekar and Takhar [6] obtained 
a similarity solution for the flow and heat transfer 

past a continuously moving semi-infinite plate in a 
micropolar fluids. Gorla and Ameri [7] used the theory 
of micropolar fluids formulated by Eringen to inves- 
tigate the mixed convection boundary layer flow on a 
continuous moving cylinder. The thermal boundary 
conditions of isothermal wall as well as constant wall 
heat flux are considered. Later, an analysis for steady 
mixed convection in micropolar boundary layer flow 
on a vertical flat plate with constant wall temperature 
or heat flux has been done by Gorla [8]. Gorla et al. 
[9] used the asymptotic expansion technique to study 
the mixed convection heat transfer of a micropolar 
fluid from a vertical isothermal plate. Consideration 
is given to the two regions, near to as well as far 
away from the leading edge. The effect of suction 
or injection on the heat transfer characteristics of a 
micropolar fluids flow past a stretching sheet with 
prescribed wall temperature has been studied by Has- 
sanien and Gorla [10]. 

In the previous studies [5-10], the thermal bound- 
ary condition at the solid surface was assumed either 
prescribed wall temperature or prescribed heat flux 
and, thus, the interaction between the solid surface 
and its adjacent boundary-layer was neglected. Con- 
sideration of the coupled heat transfer processes 
between solid body (conduction mechanism) and the 
fluid flow (convection mechanism) is known as a con- 
jugate heat transfer problem. Steady conjugate heat 
transfer of a Newtonian fluid along a solid surface 
has been investigated by several investigators. For 
example, Kelleher and Yang [11] provided an analytic 
solution of the natural convection boundary layer flow 
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NOMENCLATURE 

b thickness of the plate fl 
B dimensionless parameter of micro- 7 

inertia density A 
Cf skin friction coefficient 
Cp specific heat r/ 
F reduced stream function 0 
9 gravitational acceleration x 
G dimensionless microrotation 2 
Gr Grashof number 
Grx local Grashof number # 
t7 average heat transfer coefficient v 
j micro-inertia density 
K thermal conductivity 
L length of the plate p 
Mw dimensionless wall couple stress r 
N angular velocity of micropolar fluid 
Nu average Nusselt number 
Nux local Nusselt number 
p conjugate heat transfer parameter 
Pr Prandtl number 
T temperature 
Uc characteritic velocity 
u, v velocity components in x and y 

directions, respectively 
x, y rectangular coordinates. 

Greek symbols 
ct thermal diffusivity 

thermal expansion coefficient 
spin-gradient viscosity 
dimensionless parameter of vortex 
viscosity 
pseudo-similarity variable 
dimensionless temperature 
vortex viscosity 
dimensionless parameter of spin- 
gradient viscosity 
dynamic viscosity 
kinematic viscosity 
dimensionless streamwise 
coordinate 
density of micropolar fluid 
shear stress. 

Superscripts 
n false time level of n 
n + 1 false time level of n + 1 
' derivate with respect to ~/. 

Subscripts 
f condition in the fluid 
s condition in the plate 
w condition at solid-liquid interface 

condition in surrounding medium. 

generated adjacent to a semi-infinite vertical slab with 
a finite thickness and an arbitrary distribution of heat 
sources. A theoretical analysis of the laminar natural 
convection from a tapered, downward-projecting fin 
was presented by Lock and Gunn [12]. A quasi-one- 
dimensional conduction was assumed in the fin and 
the boundary layer approximations were treated for 
the flow. Later, Zinnes [13] used a finite-difference 
procedure to study the problem of steady, two-dimen- 
sional, laminar natural convection from a vertical, 
heat-conducting flat plate of finite thickness with an 
arbitrary heating distribution on its surface. Chida 
and Katto [14] applied the method of vectorial dimen- 
sional analysis to find the dimensionless parameters 
which control the characteristics of the conjugate heat 
transfer. 

Furthermore, Miyamoto et al. [ 15] studied, numeri- 
cally and experimentally, two-dimensional conjugate 
heat transfer problems of free convection from a ver- 
tical fiat plate with a uniform temperature or a uni- 
form heat flux at the outside surface of the plate. 
Timma and Padet [16] used the extension of Blasius 
method to investigate the similar problem. In Ref. 
[16], a one-dimensional model for the plate con- 
duction equation was considered in their analysis. 
Pozzi and Lupo [17] obtained the perturbation solu- 

tions for the coupled problem of natural convection 
along and conduction inside a heated fiat plate. 
Recently, the effects of wall conduction on the charac- 
teristics of free convection between asymmetrically 
heated vertical plates were performed by Kim et al. 
[18, 19] for uniform wall heat flux and for uniform 
wall temperature, respectively. Their results showed 
that wall conduction effects are more pronounced for 
low Grashof number flows than for high Grashof 
number flows. Char et aL [20] analyzed, using the 
cubic spline collocation numerical method, the con- 
jugate heat transfer occurring in the laminar boundary 
layer on a continuous, moving plate. More recently, 
Vynnycky and Kimura [21] made a systematic study 
on the two-dimensional conjugate free convection due 
to a vertical plate of  finite extend adjacent to a semi- 
infinite fluid region. The problem of conjugate natural 
convection flow over the outside surface of a slender 
hollow circular cylinder was studied by Na [22]. The 
aforementioned investigations dealing with conjugate 
heat transfer problems [11-22] are for Newtonian flu- 
ids flow along a solid surface. The problem of con- 
jugate natural convection flow of a micropolar fluid 
has not received attention. This has motivated the 
present study. 

The purpose of  this paper is to analyze the effect of  
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wall conduction on laminar natural convection heat 
transfer of micropolar fluids along a vertical fiat plate. 
We shall follow the previous analyses [16-17, 22] by 
assuming a thin heated plate so that heat conduction 
within the plate is one-dimensional. A cubic spline 
method has been used to solve this conjugate heat 
transfer problem. Variations in the fluid-solid inter- 
facial temperature distribution, the skin friction 
factor, the wall couple stress and the local heat transfer 
rate are presented to highlight the influence of the wall 
conduction. Comparisons with available published 
results for conjugate natural convection flow of New- 
tonian fluids along a vertical flat plate are also 
presented, in view of the interfacial temperature dis- 
tributions. 

continuity 

~u Ov 
 +Tyy =° 

momentum 

( x_~Zu x ON 
OU +v~-yy = v+ + f lg (T-  T~) 

(1) 

(2) 

angular momentum 

~N ON tc [" ~u'~ 7 02N 
U~x +v 0y ~ 2 N +  ~yy)+ b" ~y2 (3) 

MATHEMATICAL FORMULATION 

Consider a vertical flat plate of length L and finite 
thickness b, which is placed in an extensive body of 
quiescent micropolar fluid. The physical model and 
coordinate system are shown in Fig. 1, where the 
streamwise coordinate is denoted by x and that nor- 
mal to it is denoted by y. The temperature of the 
micropolar fluid far away from the plate is T~, 
whereas that of the outside surface of the plate is 
maintained at a constant temperature Tb and 
Tb> T~. 

In the formulation of the present problem the fol- 
lowing common assumptions are made:  the flow is 
steady, laminar, incompressible and two-dimen- 
sional ; the effects of viscous dissipation and the mic- 
ropolar heat conduction are neglected; and the 
boundary layer and Boussinesq approximations are 
valid. Under these assumptions, the governing equa- 
tions for the flow field are [5, 9] : 

L 

i f l  
r l i  
t l l  
f / . ,  U 
l J J  

I J I  

i l J J  
I l l  
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f f l  
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I J l  
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b - 

Fig. 1. The physical model and coordinate 
system. 

v lg 
Micropolar Fluids 

V 

energy 

f 0Y 2 . (4) 

In the foregoing equations u and v are the velocity 
components along the x- and y-directions; p, v, Cp 
and ~ are the density, kinematic viscosity, specific heat 
and the thermal expansion coefficient of the fluid ; and 
~, j  and ~, are the vortex viscosity, micro-inertia density 
and spin-gradient viscosity. Furthermore, T is the 
temperature, N is the component of microrotation 
whose direction of rotation is in the xy-plane, g is the 
acceleration due to the gravity and Kf is the thermal 
conductivity of the fluid. 

The boundary conditions for equations (1)-(4) are : 

1 0u 
u = v = 0 ;  N = - - ~ y y ;  T = T w ( x )  

a t y  = 0 (5a)  

u - * 0 ;  N ~ 0 ;  T ~ T ~  a s y - - * ~  (5b) 

where the subscripts w and oo refer to the wall and 
boundary layer edge, respectively, and the boundary 
condition (5a) for N at the plate, y = 0, means that 
the microrotation equals half of the fluid vorticity at 
the boundary [4, 7]. Tw(x) is the surface temperature 
of the plate, which is not known a priori. 

It is noted that Tw depends on x; one objective 
of this work is to predicted Tw(x) and one further 
governing equation is, therefore, required. The 
additional equation for the fiat plate is based on the 
simplification that the plate is steadily transferring 
its heat to the surrounding micropolar fluid and the 
thickness of the plate b is small compared to its length 
L. 

Under the above simplification, the axial con- 
duction term in the heat conduction equation of the 
flat plate can be omitted [16, 17, 22]. Accordingly, 
the governing equation for temperature distribution 
within the plate is 

02Ts 
= 0 ;  O<~x<~L; - b < y < ~ O  (6) 

ay 2 
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where T~ is the temperature in the plate. The boundary 
conditions for the plate are 

T~=Tb a t y = - b  (7a) 

OTs ~T(x, O) 
T~ = T(x,O); - - K ~ - y  = --Kf c ~  a t y = O -  

(7b) 

The boundary conditions (7b) state the physical 
requirements that the temperature and heat fluxes of 
the plate and the micropotar fluid must be continuous 
across the solid-fluid interface. By using equations (6) 
and (7), the temperature in the plate is given by 

Ts = T(x, 0) - (Tb -- T(x, O))y/b. (8) 

It should be noted that T(x, 0) is the unknown tem- 
perature at the interface. Thus, the heat flux continuity 
condition at the interface may be written as 

Tw(x) = T(x,O) = b Kf OT(x,O) Ks 0 ~  + Tb. (9) 

To facilitate the analysis, we now introduce pseudo- 
similarity variables (4, r/) with the reduced stream 
function F(4, rt), the dimensionless microrotation 
G(4, q), and the dimensionless temperature 0(4, t/) as 
follows : 

X 
4 = -- (10) 

L 

Grl/4 
=Z~y  (11) 

¢ 
F(4,q) - (12) 

vGrl/4~3/4 

L 2 

G(4, rl) - 7Gr3/4 41/4 N (13) 

T - T ~  
O(4, q) - T b - T ~  (14) 

where Gr is the Grashof number 

Gr = gfl(Tb- Too)L3 /v 2. (15) 

The stream function ~0(x, y) satisfies the continuity 
equation (1) automatically with 

~q, aq, 
u=fffy  v = - - 0 S .  (16) 

Substitution of equations (10)-(14) into the gov- 
erning momentum, angular momentum and energy 
equations leads to 

3 ,, 1 , , 
(1 + A ) F " +  ~FF - ~F V + A G ' + 0  

~ -  (17) 

2G"+ ~ FG' -  ~ F' G-AB4~/2(2G+ F ") 

• OG 

I O " + 3 F O ' = ¢ ( F ' ~ - O ' ~ ) .  (19) 

In the foregoing equations, the primes indicate partial 
differentiation with respect to r/alone ; Pr = v/ct is the 
Prandtl number ; and the dimensionless parameters A, 
B and 2, respectively, characterize the vortex viscosity, 
micro-inertia density and spin-gradient viscosity, 
defined as 

L2 Y (20) A = - ,  B = - -  2 = _ _ .  
# jGr l/z ' #j 

Moreover, from the thermodynamic restrictions, the 
micropolar fluid parameters must satisfy the Clau- 
sius-Duhem inequalities given in Eringen [2] and 
adopted by Jena and Mathur [5] to satisfy the various 
materials. According to these inequalities, A, B, 2, Pr 
are all non-negative [5]. 

After the transformation, equations (5) and (9) 
become 

] OF 
F ' = 0  F +  4 ~ = 0  

G + I F " = 0  p4-~/40"=0-1 a t q = 0  (21a) 

F ' = 0  G = 0  0 = 0  a s r / ~ o o  (21b) 

where p = Kf bGrl/4/Ks L is the conjugate heat transfer 
parameter. It should be noticed that for the limit case 
p = 0, the thermal boundary condition (21a) on the 
plate becomes isothermal. Hence, the magnitude of 
the parameter p determines the importance of the wall 
heat conduction effect. Moreover, for Newtonian fluid 
flow (A = 0), equations (17) and (19) governing the 
micropolar fluid flow reduce to those of  Pozzi and 
Lupo [17] in their study of the conjugate heat transfer 
characteristic of a Newtonian fluid flow along a ver- 
tical flat plate. In this case, equation (18) has no sig- 
nificance and can be omitted. 

The physical quantities of primary interest in this 
problem include the skin friction coefficient Cf, the 
dimensionless wall couple stress Mw, the local Nusselt 
number Nux, the average Nusselt number Nu and the 
interfacial temperature distribution 0~(= Tw-T~/  
Tb-- T~). The first three quantities are defined, respec- 
tively, by 

2Zw mw qwX 
C f - p U  2, Mw pU~L' Nux Kr(Tb-To~) 

(22) 

where U¢ = vGrl/2~l/2/L is the characteristic velocity. 
With the aid of equations (10)-(14), along with the 
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definitions of the wall shear stress Zw = 
[(# + r)Ou/dy + xN]y= 0 as well as the wall couple stress 
mw = ~(ON/Oy)y=O~ and the use of  Fourier's law 
qw = -Kf(c~T/Oy)y=o, it follows that 

CfGr 1/' = 2(1 +0.5A)F"({, 0) (23) 

1/2 2 1'2 Mwt,rx =-~¢  / G'(¢,O) (24) 

Nu~lGr TM = -- 0'(~, 0) (25) 

where Grx= gfl(7~--To~)x3/v ~. The average Nusselt 
number Nu is defined as Nu = hL/Kr, where/7 is the 
average heat transfer coefficient over the length L of 
the plate. In terms of non-dimensional variables, we 
have 

-N-uulGr 1i'~ = - f /  ~-  1/40'(~, O) d~. (26) 

NUMERICAL METHOD 

To obtain a solution to the problem, the resulting 
system of nonlinear equations (17)-(19) and associ- 
ated boundary conditions (21) must be solved sim- 
ultaneously because of the coupling of the system. 
The solution of the system of steady equations was 
obtained by using a pseudotransient formulation 
approach in which a false transient term was intro- 
duced to each equation [20, 23]. We then solved these 
coupled nonlinear partial differential equations by 
using the cubic spline collocation method [20, 23-25] 
in conjunction with finite difference approximation. 
The main advantages of using a cubic spline col- 
location are shown in Refs [20, 25] and are, therefore, 
omitted here. 

Equations (17)-(19) using the false transient tech- 
nique in discretized form are 

~+a - ~ j  /3  F~ij-F~i-'d \ n+l 
i,j Az =(1-[-A)Zn+' q-L4/~iJq-~i ~ i '  ) lu'° 

uTi~ 
- i'J A¢i ( 2 7 )  z. 

Gn+ 1 G n i,j - -  i,j 
Az 

0~+1 --~ii~ ij 
Az 

where 

~.Ln+ I G~,j 

[ 3  +1 Fn+l ]~n+l \ 
"~ L4 F~ij "~- ~i ij ~i--* i-lJ_QlGijn+l 

1 +1 " - A B ~ i  ( 2 G i j + l % )  - -  3/~i  ~ Gi,j i/2 n n ? l  

- -  ~iU~i,j q-I ainj - -  Gi  n- ,,j 

1 .+ /3F~ / FZJ-/~i-IJ\ n+l 

-*.,e,. 0~'~- ~_~j 
..... j A~i 

0u  02u  
N Lu=--  

Or/2 

OG OZG 
t~ = ~ Lo = On: 

00 020 
t o =  N Lo - - -  &l 2 

(28) 

(29) 

Az = z"+l--z" represents the false time step, the sub- 
script u stands for OF/&l and the superscript n denotes 
the iteration order. 

After some rearrangement, equations (27)-(29) can 
be expressed in the following spline approximation 
form : 

± S L "+1 (30) ~in.j +1 = Q i j  + R i j I~ ,+  ' T i;j % 

where ~b represents the functions u, G and 0. The 
quantities Qij, R~j and Sjj, are known coefficients, 
which are calculated at previous time steps (Table 1). 

In this analysis, the cubic spline collocation method 
is used to generate an algorithm resulting in a single 
tridiagonal system containing either the function 
values at the grid points, the first derivatives, or the 
second derivatives only. Using cubic spline relations 
described by Rubin and Khosla [24], equation (30) at 

Table 1. The coefficients of equation (30) 

¢ Q R S 

1 ,~ n + 1 u Az[-- i~ju:d + Al% + ~j -- ¢i~j (~0 - ~-ld)/A~i] -[- u~i0 3 Az(1 + A) 

i + ,  . 1 /2  . . + ,  + 1  . . . 3 + 1  + l - ~ _ ~ l j ) / h ~ i ]  hz2 A'c[-a~ j Gij--AB~i (2G~d+I,,,j)--~i~j (GId--G~-,d)/A~d+G~j AT[~F'?j +~(FT~j +1 

- AT~u~ a (0~j - -  ~_ I j ) / A ~  + 0~j 3 " " " az[~F~ij + ¢i(F~ij -- D'Ti_ ~j)/Adji] Az/Pr 

G 

0 
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(n+ 1)th iteration may be written in the tridiagonal 
f o r m  a s  

n +  I n +  1 n +  1 
a i j q ~ i j _  1 "~-b i , j t~ i j  " ~ - C i , j ~ i j + l  = di ,  j (31) 

where ~b represents the function (u, G, 0) and its first- 
and second-order derivatives. Therefore, equation 
(31) can be easily solved by the Thomas algorithm. 

The computational procedure followed is first to 
solve the energy equation, which provides the tem- 
perature field necessary for the solution of the reduced 
stream function equation. Solution of the transformed 
angular momentum equation for G then completes 
the procedure. This cycle of computation is repeated 
until convergence is achieved. The criterion for the 
convergence of the solutions is that the maximum 
relative change in all the dependent variables satisfy 

I~b~% +' --q~[jlmax < 5 X 10 -7 (32) 

RESULTS AND DISCUSSION 

Equations (17)-(19) reveal that the governing non- 
dimensional parameters of the problem are A, B, ~., Gr, 
Pr and p. In order to reduce the number of parameters 
involved, a parametric study was carried out for the 
cases of B = 5 × 104, ,,~ ~ 5.0 and Gr = 1.2 × 105 with 
the vortex viscosity parameter A ranging from 0.0 to 
5.0, the Prandtl number parameter Pr from 0.7 to 
20.0, and the conjugate heat transfer parameterp from 
0 to 0.3. These values satisfy the thermodynamic 
restrictions on the material parameters given by 
Eringen [2]. 

Since no experimental data to the problem of con- 
jugate free convection flow of micropolar fluids has 
been reported in the literature, computations were 
first carried out for the conjugate free convection flow 
of Newtonian fluids along a vertical flat plate, cor- 
responding to the case computed by Pozzi and Lupo 
[17] for A = 0 and Pr = 2.97 to assess the accuracy of 
the present numerical solution. Table 2 shows that 
the solid-liquid interfacial temperature 0(~, 0) (as a 
function of ~) obtained in the present study are ident- 
ical to those obtained by Pozzi and Lupo [17]. 

Representative dimensionless interfacial tem- 

Table 2. A comparison of the 0(3, 0) for Pr = 2.97, p = 0.4 
and A = B = 2 = 0 (Newtonian fluid) 

0(¢, 0) 
Pozzi and Present 
Lupo [17] results 

0.002 0.490 0.490 
0.016 0.620 0.621 
0.032 0.658 0.659 
0.064 0.693 0.696 
0.096 0.714 0.716 
0.159 0.739 0.740 
0.237 0.762 0.760 

perature distributions as a function of the streamwise 
coordinate ¢ are plotted in Fig. 2 for four different 
values of p with Pr = 6.0 and A = 1.0. It is also 
remarked that the present analysis includes the case 
of laminar free convection flow of micropolar fluids 
along an isothermal vertical flat plate. This cor- 
responds to the case o f p  = 0. Equation (21a) for 0 
under this circumstance reduces to 0(~, 0) = 1. It is 
seen from the figure that for a given p, the temperature 
of the fluid on the surface increases monotonically 
with increasing ~. This figure also reveals that higher 
values of p lead to larger surface temperature vari- 
ations. The primary cause of this behavior is that 
larger values of p correspond to lower wall con- 
ductance KsL and higher convective cooling (great Kf 
and Gr), which promote greater surface temperature 
variations. 

Figure 3 depicts the variation of the dimensionless 
interfacial temperature profiles with ~ for selected 
values of A. Notice that the solutions plotted in Fig. 
3 for the limiting case of A = 0, which corresponds to 
the case of Newtonian fluids. It is found that the 
dimensionless interfacial temperature is higher for the 
micropolar fluids as compared with the Newtonian 
fluids. The higher the value of A, the higher is the 
dimensionless interfacial temperature for fixed values 
of Pr and p. Also, the dimensionless interfacial tem- 
perature increases as ~ increases. 

Figure 4 shows the streamwise variation of the inter- 
facial temperature profiles for various values of the 
Prandtl number Pr. The results indicate an increase of 
Pr gives rise to greater surface temperature variations. 
The reason for this behavior is that the larger the Pr, 
the higher is the heat transfer coefficients. 

The variation of the wall shear stress Zw expressed in 
terms of local skin friction factor along the streamwise 
coordinate is shown in Fig. 5 for different values ofp. 
The dashed horizontal line (p = 0) is for the iso- 
thermal plate, while the solid lines for p > 0 are for 
nonisothermal plates, with larger temperature vari- 
ations being evoked by larger p. Thus, the more non- 
isothermal the plate, the lower is the local skin friction 
factor. In all cases, the skin friction factor increases in 
the direction of fluid flow. The above behavior is a 
consequence of the fact that in the case of free convec- 
tion, the streamwise increase of the temperature of the 
plate which causes in the buoyancy (driving force), 
leading to an additional acceleration of the flow. 

To investigate the influence of the micropolar 
material parameter A on the skin friction factor, 
numerical results are plotted in Fig. 6 for Pr = 6.0. 
An inspection of the figure reveals that the local skin 
friction factor is almost independent of ~ and varies 
strongly with the micropolar material parameter A. It 
is also observed that as A increases for fixed values of 
Pr and p, the skin friction factor decreases. In 
addition, the results show that the skin friction factor 
is higher in the case of Newtonian fluids (A = 0) than 
that of micropolar fluids. This is because the mic- 
ropolar fluids offer greater resistance (resulting from 
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Fig. 2. Variation of interfacial temperature profiles with ~ at different values ofp for Pr = 6.0 and A = 1.0. 
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Fig. 3. Varialion ofinterfacial temperature profiles with ¢ at different values of A for Pr = 6.0 andp = 0.05. 
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Fig. 4. Variation of interfacial temperature profiles with ~ at different values of Pr for ~ = 1.0 and p = 0.1. 



3648 M.-I. CHAR and C.-L. CHANG 

0.50  

0 .45  

0 .40  

F"(~,0) 

0.35  

0 .30  

p = 0.0 (Const. Wall Temp. Solution) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0.05 

f 0.1 

o.z5 ' o£ ' o.'4 ' o.'o ' o.'8 ' 

Fig. 5. Effect ofp on the skin friction parameter for Pr = 6.0 and A = 1.0. 
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Fig. 6. Effect of A on the skin friction parameter for Pr = 6.0 ; dashed lines, p = 0.0 ; solid lines, p = 0.05. 

dynamic viscosity and vortex viscosity) to the fluid 
motion when compared to a Newtonian fluid. 

In Fig. 7 the effect of Pr on the skin friction factor 
is shown for A = 1.0. The dashed lines in the figure 
indicate the skin friction factor corresponding to the 
cases of isothermal flat plate. From the figure, it can 
be seen that the local friction factor decreases with 
increasing value of Pr. A increase in the Prandtl num- 
ber implies a higher density of fluid which exhibits a 
smaller sensitivity to the buoyancy force effect, 
thereby causing a smaller change in the velocity gradi- 
ents at the flat plate. The influence of conjugate heat 
transfer parameter p on the skin friction factor is more 
pronounced for smaller Prandtl numbers. 

To show the effect of the conjugate heat transfer 
parameter p on the wall couple stress expressed by 
G'(~, 0), the curves are shown in Fig. 8 for Pr -- 6.0 
and A = 1.0. The result reveals that the wall couple 
stress increases with ~, but decreases as p increases. 
This is due to greater surface temperature differences 

with the ambient as ~ increases or p decreases which 
results in higher the wall couple stress. The influences 
of the micropolar material parameter A and the 
Prandtl number Pr on the streamwise variations of 
the wall couple stress are plotted in Figs 9 and 10, 
respectively. It is revealed from these two figures that 
increase in the value of A or Pr reduces the wall couple 
stress. 

Representative distributions of the heat flow rate 
expressed by Nux/Gr~/4 along the streamwise direction 
are presented in Fig. 11 for various values of p at 
Pr = 6.0 and A -- 1.0. The dashed line in the figure 
indicates the local heat transfer rate corresponding to 
the case of isothermal flat plate. The local heat transfer 
rate increases with increasing ~. Also, from Fig. 11 it 
may be noted that the influence of the conjugate heat 
transfer parameterp is to decrease the local heat trans- 
fer rate. This decrease increases with increasing p. 
This is in agreement with the interfacial temperature 
distributions given in Fig. 2. 
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Figure 12 gives the plot of  the local heat transfer 
rate for different values of  the micropolar  material 
parameter A. The curves illustrated that as the value 
of  A increases, the local heat transfer rate decreases. 
This is because that as A increases, the thermal bound- 
ary layer becomes larger and, thus, gives rise to a 
smaller value of  the local heat transfer rate. The effect 
of  wall conduction is more pronounced for smaller 
micropolar  material parameters. 

Figure 13 shows the distributions of  the local heat 
transfer rate for different values of  the Prandtl  number 
Pr. The dashed lines (p = 0) in the figure indicate the 
corresponding curves for the case of  isothermal plate. 
F rom Fig. 13, the results show that the higher the 
value of  the Prandtl number Pr, the larger is the depar- 
ture of  the local heat transfer rate from the constant 
wall temperature solution. The effect of  wall con- 
duction on the heat transfer rate is more pronounced 
when Pr is large. In addition, Fig. 13 also reveals that 
for a given value of  A, micropolar  fluids with larger 

Prandtl  numbers yield higher local heat transfer rate. 
This is because a larger Prandtl  number gives rise to 
a larger wall temperature gradient and, hence, a larger 
heat transfer rate. 

The average Nusselt number results Nu/Gr TM are 
tabulated in Table 3 for different values o f p  and A at 
Pr = 6.0. The numerical values indicate that increas- 
ing the value of  p or A results in a decrease in the 
values of  Nu/Gr ~/4. Table 4 displays the effect of  the 
Prandtl  number Pr on the average Nusselt  number 
results Nu/Gr TM. AS the Prandtl number  increases, the 
average Nusselt number results increase. F r o m  Tables 
3 and 4, we conclude that under the influences of  p, A 
and Pr, the behavior of  the average Nusselt number 
is similar to that of  the local Nusselt number. 

CONCLUSIONS 

In this study, the effect of  wall conduction on lami- 
nar natural convection flow ofmicropola r  fluids along 
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Table 3. Effect of p and_.A on the average Nusselt number 
resull!s Nu/Gr TM for Pr = 6.0 

Table 4. Effect of Pr__on the average Nusselt number results 
Nu/Gr I/4 for A = 1.0 

A = 1.0 p = 0.05 ~ / G r l / 4  
N u / G r  1/4 A Nu/Gr I/4 Pr p = 0,0 p ~ O. 1 

0.0 0.87825 0.0 0.93012 20.0 1.27226 1.11226 
0.05 0.84977 0.5 0.87760 6.0 0.87825 0.80117 
0.1 0.80117 1.0 0.84977 2.0 0.62809 0.58340 
0.2 0.73941 2.0 0.78801 0.7 0.44600 0.42147 
0.3 0.68282 5.0 0.70144 

a vertical flat plate is analyzed. Numerica l  results to 
the t r ans formed  bounda ry  layer equat ions  have been 
ob ta ined  by using the cubic spline col locat ion method.  
O f  interest  are the influences of  the conjugate  heat  
t ransfer  parameter ,  the micropolar  mater ia l  
parameter ,  and  the Prand t l  n u m b e r  on  the sol id-  
liquid interfacial  t empera ture  dis t r ibut ion,  the local 
skin friction factor,  the wall couple stress and  the local 

heat  t ransfer  rate. The following results have been 
ob ta ined  : 

(1) The conjugate  heat  t ransfer  pa rame te r  has  a 
substant ia l  effect on  the micropola r  fluid flow field 
and, thus,  on  the heat  t ransfer  rate as compared  to 
the isothermal  plate case (without  the effect of  wall 
conduct ion) .  A n  increase in the conjugate  heat  t rans-  
fer pa ramete r  results in a decrease in the interfacial  
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tempera ture  dis t r ibut ion,  the skin friction factor,  the 
wall couple stress and  the local heat  t ransfer  rate. 
Moreover ,  the interfacial  t empera ture  increases mon-  
otonically a long the streamwise direction. 

(2) In compar i son  to a Newton ian  fluid, the mic- 
ropolar  fluid is found  to have smaller the skin friction 
factor  and  the local heat  t ransfer  rate and  a higher  
interfacial  temperature ,  especially for higher  micro-  
polar  effect. 

(3) As the Prandt l  n u m b e r  increases, the interfacial  
tempera ture  var ia t ion  and  heat  t ransfer  rate increase, 
while the skin friction factor  and  wall couple stress 
decrease. 

(4) The  effect of  wall conduc t ion  on  the local heat  
t ransfer  rate is more  p ronounced  when  the Prandt l  
n u m b e r  is large or  micropola r  mater ia l  pa ramete r  is 
small. 
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